mirror of
https://git.telodendria.io/Telodendria/Cytoplasm.git
synced 2024-11-22 04:00:47 +03:00
Add basic Graph API.
This is going to be useful with state resolution and dependency ordering, both of which will be crutial components of Telodendria.
This commit is contained in:
parent
c4ef6d4ddc
commit
e592cd8e5c
2 changed files with 522 additions and 0 deletions
347
src/Graph.c
Normal file
347
src/Graph.c
Normal file
|
@ -0,0 +1,347 @@
|
||||||
|
/*
|
||||||
|
* Copyright (C) 2022-2023 Jordan Bancino <@jordan:bancino.net>
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person
|
||||||
|
* obtaining a copy of this software and associated documentation files
|
||||||
|
* (the "Software"), to deal in the Software without restriction,
|
||||||
|
* including without limitation the rights to use, copy, modify, merge,
|
||||||
|
* publish, distribute, sublicense, and/or sell copies of the Software,
|
||||||
|
* and to permit persons to whom the Software is furnished to do so,
|
||||||
|
* subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be
|
||||||
|
* included in all copies or portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||||
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||||
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||||
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||||
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||||
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||||
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
* SOFTWARE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <Graph.h>
|
||||||
|
|
||||||
|
#include <Memory.h>
|
||||||
|
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
struct Graph
|
||||||
|
{
|
||||||
|
size_t n;
|
||||||
|
Edge *matrix;
|
||||||
|
};
|
||||||
|
|
||||||
|
Graph *
|
||||||
|
GraphCreate(size_t n)
|
||||||
|
{
|
||||||
|
Graph *g;
|
||||||
|
|
||||||
|
if (!n)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
g = Malloc(sizeof(Graph));
|
||||||
|
if (!g)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
g->n = n;
|
||||||
|
|
||||||
|
g->matrix = Malloc((n * n) * sizeof(Edge));
|
||||||
|
if (!g->matrix)
|
||||||
|
{
|
||||||
|
Free(g);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
memset(g->matrix, 0, (n * n) * sizeof(Edge));
|
||||||
|
|
||||||
|
return g;
|
||||||
|
}
|
||||||
|
|
||||||
|
Graph *
|
||||||
|
GraphCreateWithEdges(size_t n, Edge * matrix)
|
||||||
|
{
|
||||||
|
Graph *g = GraphCreate(n);
|
||||||
|
|
||||||
|
if (!g)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
memcpy(g->matrix, matrix, (n * n) * sizeof(Edge));
|
||||||
|
|
||||||
|
return g;
|
||||||
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
GraphFree(Graph * g)
|
||||||
|
{
|
||||||
|
if (!g)
|
||||||
|
{
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
Free(g->matrix);
|
||||||
|
Free(g);
|
||||||
|
}
|
||||||
|
|
||||||
|
Edge
|
||||||
|
GraphEdgeGet(Graph * g, Node n1, Node n2)
|
||||||
|
{
|
||||||
|
if (n1 >= g->n || n2 >= g->n)
|
||||||
|
{
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
return g->matrix[(g->n * n1) + n2];
|
||||||
|
}
|
||||||
|
|
||||||
|
Edge
|
||||||
|
GraphEdgeSet(Graph * g, Node n1, Node n2, Edge e)
|
||||||
|
{
|
||||||
|
int oldVal;
|
||||||
|
|
||||||
|
if (n1 >= g->n || n2 >= g->n)
|
||||||
|
{
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (e < 0)
|
||||||
|
{
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
oldVal = g->matrix[(g->n * n1) + n2];
|
||||||
|
|
||||||
|
g->matrix[(g->n * n1) + n2] = e;
|
||||||
|
|
||||||
|
return oldVal;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t
|
||||||
|
GraphCountNodes(Graph * g)
|
||||||
|
{
|
||||||
|
return g ? g->n : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
Node *
|
||||||
|
GraphBreadthFirstSearch(Graph * G, Node s, size_t * n)
|
||||||
|
{
|
||||||
|
Node *visited;
|
||||||
|
Node *queue;
|
||||||
|
Node *result;
|
||||||
|
size_t queueSize;
|
||||||
|
Node i;
|
||||||
|
|
||||||
|
if (!G || !n)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
*n = 0;
|
||||||
|
|
||||||
|
result = Malloc(G->n * sizeof(Node));
|
||||||
|
if (!result)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (s >= G->n)
|
||||||
|
{
|
||||||
|
Free(result);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
visited = Malloc(G->n * sizeof(Node));
|
||||||
|
memset(visited, 0, G->n * sizeof(Node));
|
||||||
|
queue = Malloc(G->n * sizeof(Node));
|
||||||
|
queueSize = 0;
|
||||||
|
|
||||||
|
visited[s] = 1;
|
||||||
|
|
||||||
|
queueSize++;
|
||||||
|
queue[queueSize - 1] = s;
|
||||||
|
|
||||||
|
while (queueSize)
|
||||||
|
{
|
||||||
|
s = queue[queueSize - 1];
|
||||||
|
queueSize--;
|
||||||
|
|
||||||
|
result[*n] = s;
|
||||||
|
(*n)++;
|
||||||
|
|
||||||
|
for (i = 0; i < G->n; i++)
|
||||||
|
{
|
||||||
|
if (GraphEdgeGet(G, s, i) && !visited[i])
|
||||||
|
{
|
||||||
|
visited[i] = 1;
|
||||||
|
|
||||||
|
queueSize++;
|
||||||
|
queue[queueSize - 1] = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Free(visited);
|
||||||
|
Free(queue);
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
GraphDepthFirstSearchRecursive(Graph * G, Node s, Node * result, size_t * n,
|
||||||
|
Node * visited)
|
||||||
|
{
|
||||||
|
size_t i;
|
||||||
|
|
||||||
|
visited[s] = 1;
|
||||||
|
|
||||||
|
result[*n] = s;
|
||||||
|
(*n)++;
|
||||||
|
|
||||||
|
for (i = 0; i < G->n; i++)
|
||||||
|
{
|
||||||
|
if (GraphEdgeGet(G, s, i) && !visited[i])
|
||||||
|
{
|
||||||
|
GraphDepthFirstSearchRecursive(G, i, result, n, visited);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Node *
|
||||||
|
GraphDepthFirstSearch(Graph * G, Node s, size_t * n)
|
||||||
|
{
|
||||||
|
Node *visited;
|
||||||
|
Node *result;
|
||||||
|
|
||||||
|
if (!G || !n)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
result = Malloc(G->n * sizeof(Node));
|
||||||
|
if (!result)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
*n = 0;
|
||||||
|
|
||||||
|
if (s >= G->n)
|
||||||
|
{
|
||||||
|
Free(result);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
visited = Malloc(G->n * sizeof(Node));
|
||||||
|
memset(visited, 0, G->n * sizeof(Node));
|
||||||
|
|
||||||
|
GraphDepthFirstSearchRecursive(G, s, result, n, visited);
|
||||||
|
|
||||||
|
Free(visited);
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
GraphTopologicalSortRecursive(Graph * G, Node s, Node * visited,
|
||||||
|
Node * stack, size_t * stackSize)
|
||||||
|
{
|
||||||
|
size_t i;
|
||||||
|
|
||||||
|
visited[s] = 1;
|
||||||
|
|
||||||
|
for (i = 0; i < G->n; i++)
|
||||||
|
{
|
||||||
|
if (GraphEdgeGet(G, s, i) && !visited[i])
|
||||||
|
{
|
||||||
|
GraphTopologicalSortRecursive(G, i, visited, stack, stackSize);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
stack[*stackSize] = s;
|
||||||
|
(*stackSize)++;
|
||||||
|
}
|
||||||
|
|
||||||
|
Node *
|
||||||
|
GraphTopologicalSort(Graph * G, size_t * n)
|
||||||
|
{
|
||||||
|
Node *visited;
|
||||||
|
Node *stack;
|
||||||
|
Node *result;
|
||||||
|
|
||||||
|
size_t i;
|
||||||
|
size_t stackSize;
|
||||||
|
|
||||||
|
if (!G || !n)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
*n = 0;
|
||||||
|
|
||||||
|
result = Malloc(G->n * sizeof(Node));
|
||||||
|
if (!result)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
visited = Malloc(G->n * sizeof(Node));
|
||||||
|
memset(visited, 0, G->n * sizeof(Node));
|
||||||
|
stack = Malloc(G->n * sizeof(Node));
|
||||||
|
memset(stack, 0, G->n * sizeof(Node));
|
||||||
|
|
||||||
|
stackSize = 0;
|
||||||
|
|
||||||
|
for (i = 0; i < G->n; i++)
|
||||||
|
{
|
||||||
|
if (!visited[i])
|
||||||
|
{
|
||||||
|
GraphTopologicalSortRecursive(G, i, visited, stack, &stackSize);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Free(visited);
|
||||||
|
|
||||||
|
while (stackSize)
|
||||||
|
{
|
||||||
|
stackSize--;
|
||||||
|
result[*n] = stack[stackSize];
|
||||||
|
(*n)++;
|
||||||
|
}
|
||||||
|
|
||||||
|
Free(stack);
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
Graph *
|
||||||
|
GraphTranspose(Graph * G)
|
||||||
|
{
|
||||||
|
Graph *T = Malloc(sizeof(Graph));
|
||||||
|
size_t i, j;
|
||||||
|
|
||||||
|
T->n = G->n;
|
||||||
|
T->matrix = Malloc((G->n * G->n) * sizeof(Edge));
|
||||||
|
|
||||||
|
memset(T->matrix, 0, (T->n * T->n) * sizeof(Edge));
|
||||||
|
|
||||||
|
for (i = 0; i < G->n; i++)
|
||||||
|
{
|
||||||
|
for (j = 0; j < G->n; j++)
|
||||||
|
{
|
||||||
|
if (GraphEdgeGet(G, i, j))
|
||||||
|
{
|
||||||
|
GraphEdgeSet(T, j, i, GraphEdgeGet(G, i, j));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return T;
|
||||||
|
}
|
175
src/include/Graph.h
Normal file
175
src/include/Graph.h
Normal file
|
@ -0,0 +1,175 @@
|
||||||
|
/*
|
||||||
|
* Copyright (C) 2022-2023 Jordan Bancino <@jordan:bancino.net>
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person
|
||||||
|
* obtaining a copy of this software and associated documentation files
|
||||||
|
* (the "Software"), to deal in the Software without restriction,
|
||||||
|
* including without limitation the rights to use, copy, modify, merge,
|
||||||
|
* publish, distribute, sublicense, and/or sell copies of the Software,
|
||||||
|
* and to permit persons to whom the Software is furnished to do so,
|
||||||
|
* subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be
|
||||||
|
* included in all copies or portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||||
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||||
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||||
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||||
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||||
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||||
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
* SOFTWARE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef CYTOPLASM_GRAPH_H
|
||||||
|
#define CYTOPLASM_GRAPH_H
|
||||||
|
|
||||||
|
/***
|
||||||
|
* @Nm Graph
|
||||||
|
* @Nd Extremely simple graph, implemented as an adjacency matrix.
|
||||||
|
* @Dd July 15 2023
|
||||||
|
*
|
||||||
|
* .Nm
|
||||||
|
* is a basic graph data structure originally written for a computer
|
||||||
|
* science class on data structures and algorithms, in which it
|
||||||
|
* received full credit. This is an adaptation of the original
|
||||||
|
* implementation that follows the Cytoplasm style and uses Cytoplasm
|
||||||
|
* APIs when convenient.
|
||||||
|
* .P
|
||||||
|
* .Nm
|
||||||
|
* stores data in an adjacency matrix, which means the storage
|
||||||
|
* complexity is O(N^2), where N is the number of vertices (called
|
||||||
|
* Nodes in this implementation) in the graph. However, this makes the
|
||||||
|
* algorithms fast and efficient.
|
||||||
|
* .P
|
||||||
|
* Nodes are identified by index, so the first node is 0, the second
|
||||||
|
* is 1, and so on. This data structure does not support storing
|
||||||
|
* arbitrary data as nodes; rather, the intended use case is to add
|
||||||
|
* all your node data to an Array, thus giving each node an index,
|
||||||
|
* and then manipulating the graph with that index. This allows access
|
||||||
|
* to node data in O(1) time in call cases, and is the most memory
|
||||||
|
* efficient.
|
||||||
|
* .P
|
||||||
|
* .Nm
|
||||||
|
* can be used to store a variety of types of graphs, although it is
|
||||||
|
* primarily suited to directed and weighted graphs.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <stddef.h>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The functions provided here operate on an opaque graph structure.
|
||||||
|
* This structure really just stores a matrix in a contiguous block of
|
||||||
|
* memory, as well as the number of nodes in the graph, but the
|
||||||
|
* structure is kept opaque so that it remains internally consistent.
|
||||||
|
* It also maintains the style of the Cytoplasm library.
|
||||||
|
*/
|
||||||
|
typedef struct Graph Graph;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* An Edge is really just a weight, which is easily represented by an
|
||||||
|
* integer. However, it makes sense to alias this to Edge for clarity,
|
||||||
|
* both in the documentation and in the implementation.
|
||||||
|
*/
|
||||||
|
typedef int Edge;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A Node is really just a row or column in the matrix, which is easily
|
||||||
|
* represented by an unsigned integer. However, it makes sense to alias
|
||||||
|
* this to Node for clarity, both in the documentation and the
|
||||||
|
* implementation.
|
||||||
|
*/
|
||||||
|
typedef size_t Node;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a new graph structure with the given number of vertices.
|
||||||
|
*/
|
||||||
|
extern Graph *GraphCreate(size_t);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a new graph data structure with the given number of vertices
|
||||||
|
* and the given adjacency matrix. The adjacency matrix is copied
|
||||||
|
* verbatim into the graph data structure without any validation.
|
||||||
|
*/
|
||||||
|
extern Graph *GraphCreateWithEdges(size_t, Edge *);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Free all memory associated with the given graph. Since graphs are
|
||||||
|
* just a collection of numbers, they do not depend on each other in
|
||||||
|
* any way.
|
||||||
|
*/
|
||||||
|
extern void GraphFree(Graph *);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get the weight of the edge connecting the node specified first to
|
||||||
|
* the node specified second. If this is a directed graph, it does not
|
||||||
|
* necessarily follow that there is an edge from the node specified
|
||||||
|
* second to the node specified first. It also does not follow that
|
||||||
|
* such an edge, if it exists, has the same weight.
|
||||||
|
* .P
|
||||||
|
* This function will return -1 if the graph is invalid or either node
|
||||||
|
* is out of bounds. It will return 0 if there is no such edge from the
|
||||||
|
* node specified first to the node specified second.
|
||||||
|
*/
|
||||||
|
extern Edge GraphEdgeGet(Graph *, Node, Node);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Set the weight of the edge connecting the node specified first to
|
||||||
|
* the node specified second. If this is not a directed graph, this
|
||||||
|
* function will have to be called twice, the second time reversing the
|
||||||
|
* order of the nodes. To remove the edge, specify a weight of 0.
|
||||||
|
*/
|
||||||
|
extern Edge GraphEdgeSet(Graph *, Node, Node, Edge);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get the number of nodes in the given graph. This operation is a
|
||||||
|
* simple memory access that happens in O(1) time.
|
||||||
|
*/
|
||||||
|
extern size_t GraphCountNodes(Graph *);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Perform a breadth-first search on the given graph, starting at the
|
||||||
|
* specified node. This function returns a list of nodes in the order
|
||||||
|
* they were touched. The size of the list is stored in the unsigned
|
||||||
|
* integer pointed to by the last argument.
|
||||||
|
* .P
|
||||||
|
* If an error occurs, NULL will be returned. Otherwise, the returned
|
||||||
|
* pointer should be freed with the Memory API when it is no longer
|
||||||
|
* needed.
|
||||||
|
*/
|
||||||
|
extern Node * GraphBreadthFirstSearch(Graph *, Node, size_t *);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Perform a depth-first search on the given graph, starting at the
|
||||||
|
* specified node. This function returns a list of nodes in the order
|
||||||
|
* they were touched. The size of the list is stored in the unsigned
|
||||||
|
* integer pointed to by the last argument.
|
||||||
|
* .P
|
||||||
|
* If an error occurs, NULL will be returned. Otherwise the returned
|
||||||
|
* pointer should be freed with the Memory API when it is no longer
|
||||||
|
* needed.
|
||||||
|
*/
|
||||||
|
extern Node *GraphDepthFirstSearch(Graph *, Node, size_t *);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Perform a topological sort on the given graph. This function returns
|
||||||
|
* a list of nodes in topological ordering, though note that this is
|
||||||
|
* probably not the only topological ordering that exists for the
|
||||||
|
* graph. The size of the list is stored in the unsigned integer
|
||||||
|
* pointed to by the last argument. It should always be the number of
|
||||||
|
* nodes in the graph, but is provided for consistency and convenience.
|
||||||
|
* .P
|
||||||
|
* If an error occurs, NULL will be returned. Otherwise the returned
|
||||||
|
* pointer should be freed with the Memory API when it is no longer
|
||||||
|
* needed.
|
||||||
|
*/
|
||||||
|
extern Node *GraphTopologicalSort(Graph *, size_t *);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Transpose the given graph, returning a brand new graph that is the
|
||||||
|
* result of the transposition.
|
||||||
|
*/
|
||||||
|
extern Graph * GraphTranspose(Graph *);
|
||||||
|
|
||||||
|
#endif /* CYTOPLASM_GRAPH_H */
|
Loading…
Reference in a new issue